Tagstrategy

The key challenge for the industry in the next 5 years is consumer trust

T

Note: Every quarter or so I write our client newsletter. This time it touched on some aspects I figured might be useful to this larger audience, too, so I trust you’ll forgive me cross-posting this bit from the most recent newsletter.

Some questions I’ve been pondering and that we’ve been exploring in conversations with our peer group day in, day out.

This isn’t an exhaustive list, of course, but gives you a hint about my headspace?—?experience shows that this can serve as a solid early warning system for industry wide debates, too. Questions we’ve had on our collective minds:

1. What’s the relationship between (digital) technology and ethics/sustainability? There’s a major shift happening here, among consumers and industry, but I’m not yet 100% sure where we’ll end up. That’s a good thing, and makes for interesting questions. Excellent!

2. The Internet of Things (IoT) has one key challenge in the coming years: Consumer trust. Between all the insecurities and data leaks and bricked devices and “sunsetted” services and horror stories about hacked toys and routers and cameras and vibrators and what have you, I’m 100% convinced that consumer trust?—?and products’ trustworthiness?—?is the key to success for the next 5 years of IoT. (We’ve been doing lots of work in that space, and hope to continue to work on this in 2018.)

3. Artificial Intelligence (AI): What’s the killer application? Maybe more importantly, which niche applications are most interesting? It seems safe to assume that as deploying machine learning gets easier and cheaper every day we’ll see AI-like techniques thrown at every imaginable niche. Remember when everyone and their uncle had to have an app? It’s going to be like that but with AI. This is going to be interesting, and no doubt it’ll produce spectacular successes as well as fascinating failures.

4. What funding models can we build the web on, now that surveillance tech (aka “ad tech”) has officially crossed over to the dark side and is increasingly perceived as no-go?

These are all interesting, deep topics to dig into. They’re all closely interrelated, too, and have implications on business, strategy, research, policy. We’ll continue to dig in.

But also, besides these larger, more complex questions there are smaller, more concrete things to explore:

  • What are new emerging technologies? Where are exciting new opportunities?
  • What will happen due to more ubiquitous autonomous vehicles, solar power, crypto currencies? What about LIDAR and Li-Fi?
  • How will the industry adapt to the European GDPR? Who will be the first players to turn data protection and scarcity into a strength, and score major wins? I’m convinced that going forward, consumer and data protection offer tremendous business opportunities.

If these themes resonate, or if you’re asking yourself “how can we get ahead in 2018 without compromising user rights”, let’s chat.

Want to work together? I’m starting the planning for 2018. If you’d like to work with me in the upcoming months, please get in touch.

PS: I write another newsletter, too, in which I share regular project updates, thoughts on the most interesting articles I come across, and where I explore areas around tech, society, culture & business that I find relevant. To watch my thinking unfolding and maturing, this is for you. You can subscribe here.

Google’s new push to AI-powered services

G

At their Pixel 2 event at the beginning of the month, Google released a whole slew of new products. Besides new phones there were updated version of their smart home hub, Google Home, and some new types of product altogether.

I don’t usually write about product launches, but this event has me excited about new tech for the first time in a long time. Why? Because some aspects stood out as they stand for a larger shift in the industry: The new role of artificial intelligence (AI) as it seeps into consumer goods.

Google have been reframing themselves from a mobile first to an AI first company for the last year or so. (For full transparency I should add that I’ve worked with Google occasionally in the recent past, but everything discussed here is of course publicly available.)

We now see this shift of focus play out as it manifests in products.

Here’s Google CEO Sundar Pichai at the opening of Google’s Pixel 2 event:

We’re excited by the shift from a mobile-first to an AI-first world. It is not just about applying machine learning in our products, but it’s radically re-thinking how computing should work. (…) We’re really excited by this shift, and that’s why we’re here today. We’ve been working on software and hardware together because that’s the best way to drive the shifts in computing forward. But we think we’re in the unique moment in time where we can bring the unique combination of AI, and software, and hardware to bring the different perspective to solving problems for users. We’re very confident about our approach here because we’re at the forefront of driving the shifts with AI.
AI as a platform: Google has it.
First things first: I fully agree – there’s currently no other company that’s in as well positioned to drive the development of AI, or to benefit from it. In fact, back in May 2017 I wrote that “Google just won the next 10 years.” That was when Google just hinted at their capabilities in terms of new features, but also announced building AI infrastructure for third parties to use. AI as a platform: Google has it.

Before diving into some structural thoughts, let’s look at two specific products they launched:

  1. Google Clips are a camera you can clip somewhere, and it’ll automatically take photos when some conditions are met: A certain person’s face is in the picture, or they are smiling. It’s an odd product for sure, but here’s the thing: It’s fully machine learning powered facial recognition, and the computing happens on the device. This is remarkable for its incredible technical achievement, and for its approach. Google has become a company of high centralization—the bane of cloud computing, I’d lament. Google Clips works at the edge, decentralized. This is powerful, and I hope it inspires a new generation of IoT products that embrace decentralization.
  2. Google’s new in-ear headphones offer live translation. That’s right: These headphones should be able to allow for multi-language human-to-human live conversations. (This happens in the cloud, not locally.) Now how well this works in practice remains to be seen, and surely you wouldn’t want to run a work meeting through them. But even if it eases travel related helplessness just a bit it’d be a big deal.

So as we see these new products roll out, the actual potential becomes much more graspable. There’s a shape emerging from the fog: Google may not really be AI first just yet, but they certainly have made good progress on AI-leveraged services.

The mental model I’m using for how Apple and Google compare is this:


The Apple model

Apple’s ecosystem focuses on an integration: Hardware (phones, laptops) and software (OSX, iOS) are both highly integrated, and services are built on top. This allows for consistent service delivery and for pushing the limits of hardware and software alike, and most importantly for Apple’s bottom line allows to sell hardware that’s differentiated by software and services: Nobody else is allowed to make an iPhone.

Google started at the opposite side, with software (web search, then Android). Today, Google looks something like this:


The Google model

Based on software (search/discovery, plus Android) now there’s also hardware that’s more integrated. Note that Android is still the biggest smartphone platform as well as basis for lots of connected products, so Google’s hardware isn’t the only game in town. How this works out with partners over time remains to be seen. That said, this new structure means Google can push its software capabilities to the limits through their own hardware (phones, smart home hubs, headphones, etc.) and then aim for the stars with AI-leveraged services in a way I don’t think we’ll see from competitors anytime soon.

What we’ve seen so far is the very tip of the iceberg: As Google keeps investing in AI and exploring the applications enabled by machine learning, this top layer should become exponentially more interesting: They develop not just the concrete services we see in action, but also use AI to build their new models, and open up AI as a service for other organizations. It’s a triple AI ecosystem play that should reinforce itself and hence gather more steam the more it’s used.

This offers tremendous opportunities and challenges. So while it’s exciting to see this unfold, we need to get our policies ready for futures with AI.

Please note that this is cross-posted from Medium. Disclosure: I’ve worked with Google a few times in the recent past.

Getting our policies ready for AI futures

G

In late 2016, the White House published a report, “Artificial Intelligence, Automation, and the Economy” (PDF). It’s a solid work of research and forecasting, and proposes equally solid policy recommendations. Here’s part of the framing, from the report’s intro:

AI-driven automation will continue to create wealth and expand the American economy in the coming years, but, while many will benefit, that growth will not be costless and will be accompanied by changes in the skills that workers need to succeed in the economy, and structural changes in the economy. Aggressive policy action will be needed to help Americans who are disadvantaged by these changes and to ensure that the enormous benefits of AI and automation are developed by and available to all.

This cuts right to the chase: Artificial intelligence (AI) will create wealth, and it will replace jobs. AI will change the future of work, and the economy.

AI will change the future of work, and the economy.

Revisiting this report made me wonder if similar policy research exists in Germany and at the European level? A quick search online brought up bits and pieces (Merkel arguing for bundling know-how for AI and acknowledging that AI spending is low in Europe, demands for transparency in algorithms). However, there doesn’t seem to be an overarching guiding policy. (I asked federal government spokesperson Steffen Seibert on Twitter, but so far he hasn’t responded. Which is fair—why would he!)

Germany has a mixed track record of tech policy

For the record: In other areas, Germany is making good progress. Take autonomous driving, for example. Germany just adopted an action plan on automated driving that regulates key points of how autonomous vehicles should behave on the street—and regulates it well! Key points include that autonomous driving is worth promoting because it causes fewer accidents, dictates that damage to property must take precedence over personal injury (aka life has priority), and that in unavoidable accident situations there may not be any discrimination between individuals based on age, gender, etc. It even includes data sovereignty for drivers. Well done!

On the other hand, for the Internet of Things (IoT) Germany squandered opportunities in that IoT is framed almost exclusively as industrial IoT under the banner of Industrie 4.0. This is understandable given Germany’s manufacturing-focused economy, but it excludes a huge amount of super interesting and promising IoT. It’s clearly the result of successful lobbying but at the expense at a more inclusive, diverse portfolio of opportunities.

So where do we stand with artificial intelligence in Germany? Honestly, in terms of policy I cannot tell.

So where do we stand with artificial intelligence in Germany? Honestly, in terms of policy I cannot tell.

Update: The Federal Ministry of Education and Research recently announced an initiative to explore AI: Plattform Lernende Systeme (“platform living systems”). Thanks to Christian Katzenbach for the pointer!

AI & the future of work

The White House AI report talks a lot about the future of work, and of employment specifically. This makes sense: It’s one of the key aspects of AI. (Some others are, I’d say, opportunity for the creation of wealth on one side and algorithmic discrimination on the other.)

How AI will impact the work force, the economy, and the role of the individual is something we can only speculate about today.

In a recent workshop with stipendiaries of the Heinrich-Böll-Foundation on the future of work we explored how digital, AI, IoT and adjacent technologies impact how we work, and how we think about work. It was super interesting to see this diverse group of very, very capable students and young professionals bang their heads against the complexities in this space. Their findings mirrored what experts across the field also have been finding: That there are no simple answers, and most likely we’ll see huge gains in some areas and huge losses in others.

Like all automation before, depending on the context we’ll see AI either displace human workers or increase their productivity.

The one thing I’d say is a safe bet is this: Like all automation before, depending on the context we’ll see AI either displace human workers or increase their productivity. In other words, some human workers will be super-powered by AI (and related technologies), whereas others will fall by the wayside.

Over on Ribbonfarm, Venkatesh Rao phrases this very elegantly: Future jobs will either be placed above or below the API: “You either tell robots what to do, or are told by robots what to do.” Which of course conjures to mind images of roboticized warehouses, like this one:

Just to be clear, this is a contemporary warehouse in China. Amazon runs similar operations. This isn’t the future, this is the well-established present.

Future jobs will either be placed above or below the API: “You either tell robots what to do, or are told by robots what to do.”

I’d like to stress that I don’t think a robot warehouse is inherently good or bad. It depends on the policies that make sure the humans in the picture do well.

Education is key

So where are we in Europe again? In Germany, we still try to define what IoT and AI means. In China it’s been happening for years.

This picture shows a smart lamp in Shenzhen that we found in a maker space:

What does the lamp do? It tracks if users are nearby, so it can switch itself off when nobody’s around. It automatically adjusts light the temperature depending on the light in the room. As smart lamps go, these features are okay: Not horrible, not interesting. If it came out of Samsung or LG or Amazon I wouldn’t be surprised.

So what makes it special? This smart lamp was built by a group of fifth graders. That’s right: Ten and eleven year olds designed, programmed, and built this. Because the curriculum for local students includes the skills that enable them to do this. In Europe, this is unheard of.

I think the gap in skills regarding artificial intelligence is most likely quite similar. And I’m not just talking about the average individual: I’m talking about readiness at the government level, too. Our governments aren’t ready for AI.

Our governments aren’t ready for AI.

It’s about time we start getting ready for AI, IoT, and robotics. Always a fast mover, Estonia considers a law to legalize AI, and they smartly kick off this process with a multi-stakeholder process.

What to do?

In Germany, the whole discussion is still in its earliest stages. Let’s not fall into the same trap as we did for IoT: Both IoT and AI are more than just industry. They are both broader and deeper than the adjective industrial implies.

The White House report can provide some inspiration, especially around education policy.

We need to invest in what OECD calls the active labor market policies, i.e. training and skill development for adults. We need to update our school curricula to get youths ready for the future with both hands-on applicable skills (coding, data analysis, etc.) and with the larger contextual meta skills to make smart decisions (think humanities, history, deep learning).

We need to reform immigration to allow for the best talent to come to Europe more easily (and allow for voting rights, too, because nobody feels at home where they pay taxes with no representation).

Without capacity building, we’ll never see the digital transformation we need to get ready for the 21st century.

Zooming out to the really big picture, we need to start completely reforming our social security systems for an AI world that might not deliver full employment ever again. This could include Universal Basic Income, or maybe rather Universal Basic Services, or a different approach altogether.

This requires capacity building on the side of our government. Without capacity building, we’ll never see the digital transformation we need to get ready for the 21st century.

But I know one thing: We need to kick off this process today.

///

Please note: This is cross-posted from Medium.

Opportunities at the intersection of emerging tech, strategy, and good ethics

O

We strongly believe that good ethics mean good business. This isn’t just an empty phrase, either: We know from our own experience that often it pays great dividends to go the extra step and taking into account the implications of business decisions.

This is especially true in areas that employ new technologies, simply because there are more unknowns in emerging tech. And more unknowns = higher risks.

Our field of operation is at the intersection of emerging tech, strategy, and good business ethics.

Take, for example, the global tech company’s VP who adapted community-driven guidelines for data ownership in IoT: He knew that this particular pioneer community had a deeper understanding than most of the issues at stake. Even though these data ownership guidelines meant possibly losing some short term revenue gains, he trusted in their long-term positive side effects. Now, and at the time unexpectedly, his organization is in a better position than most to comply with the new EU data protection regulation (GDPR). Even before that, these guidelines likely inspired user trust and confidence.

Other companies lose their best talents because of sketchy business tactics—to those who are honest and trustworthy, and have a credible and powerful mission.

If you pay attention you’ll find these examples everywhere: Good ethics aren’t a buzzword, nor are they rocket science. They’re 100% compatible with good business. They might just be a requisite.

IoT, artificial intelligence, and digital transformation are all intimately related

I

Here at The Waving Cat, we’re in the business of analyzing the impact of emerging technologies and finding ways to harness their opportunities. This is why our services include both research & foresight and strategy: First we need to develop a deep understanding, then we can apply it. Analyze first, act second.

Over the last few years, my work has mostly homed in on the Internet of Things (#IoT). This is no coincidence: IoT is where a lot of emerging technologies converge. Hence, IoT has been a massive driver of digital transformation.

IoT has been a massive driver of digital transformation.

However, increasingly the lines between IoT and other emerging technologies are becoming ever-more blurry. Concretely, data-driven and algorithmic decision-making is taking on a life on its own, both within the confines of IoT and outside of them. Under the labels of machine learning (#ML), artificial intelligence (#AI), or the (now strangely old school moniker) big data we’ve seen tremendous development over the last few years.

The physical world is already suffused with data, sensors, and connected devices/systems, and we’re only at the beginning of this development. Years ago I curated a track at NEXT Conference called the Data Layer, on the premise that the physical world will be covered in a data layer. Now, 5 years or so later, this reality has absolutely come to pass.

IoT with its connected devices, smart cities, connected homes, and connected mobility is part of that global infrastructure. No matter if the data crunching happens in the cloud or at the edge (i.e. close to where the data is captured/used), more and more has to happen implicitly and autonomously. Machine learning and AI play an essential role in this.

Increasingly, artificial intelligence is becoming a driver of digital transformation

Most organizations will need to develop an approach to harnessing artificial intelligence, and so increasingly artificial intelligence is becoming a driver of digital transformation.

As of today, Internet of Things, artificial intelligence & machine learning, and digital transformation are intimately connected. You can’t really get far in one without understanding the others.

These are exciting, interesting times, and they offer lots of opportunities. We’re here to help you figure out how to harness them.

Monthnotes for July 2017

M

July was short work month: I’m just coming back online from a vacation that started in mid-July. We spent the time on the Spanish side of the Pyrenees and across Basque Country. Gorgeous and highly recommended!

Ordesa Valley

Ordesa Valley

Ordesa Valley

Ordesa Valley / Torla

A quick note: I’ll be doing the fall planning over the next few weeks, and as of now there’s some availability. If you’re looking into expanding your markets, creating new products, or understanding the environment of connected products & users better, get in touch now. First come, first serve!

So what happened last month and what’s coming up?

Writing, talks, media

Stories Connecting Dots

Podcast: Stories Connecting Dots

Markus Andrezak of überproduct kindly invited me to his excellent podcast Stories Connecting Dots. This is episode 12, titled “Ethics for The Internet of Things”. (Read my blog post.)

We had a lovely, intense chat about ethics for the internet of things (IoT) space, how to start new projects, and lots more.

Quoting from the show notes:

That lead to getting to know the community around the Internet of Things, which again led to organising the first Thingscon in Berlin. An epic experience in starting a conference, low on budget, high on energy and even the attention of Bruce Sterling.
During the conversation, you will hear a lot about how Peter sees the world. And as I did not choose Peter by chance, you will hear a lot of things on
  • how to start things off
  • how to open things up for a larger community
  • how to be inclusive
  • how to have impact as a person or a small boutique
  • how to work in early phases once things are in genesis so that your impact may still be there when things grow to utility

Learn more about this episode and subscribe to the podcast (RSS, iTunes)!

Markus decided to split up our chat into two episodes because we covered a lot of ground. Where this one focused on the topics above, the next one is going to be all about Shenzhen.

Future-proofing your org / forecasting, IoT, AI

Recently I gave a presentation for a large retailer on how to future-proof the organization. I focused on forecasting as a method, Joi Ito’s motto Compasses over Maps, and an eclectic selection of signals from the world of IoT, AI, and humans & machines working side by side.

It’s somewhat anonymized/cleaned up from concrete references. It’s also an elusive, rarely spotted set of slides in German!

ThingsCon Report: The State of Responsible IoT

Thanks to Bruce Sterling, our ThingsCon report on the State of Responsible IoT was featured on WIRED. Yay!

Bruce Sterling featured our report on WIRED
Bruce Sterling featured our report on WIRED

Read our ThingsCon Report: The State of Responsible IoT.

View Source: Shenzhen

At the most recent ThingsCon Salon Berlin, Shenzhen was featured heavily.

Among other things, we screened The Incredible Machine’s documentary of their quest to build a smart lock as part of a more responsible bike sharing service. This film was created as part of our joint research trips to Shenzhen that I also documented in View Source: Shenzhen.

So for context, I gave a brief introduction to Shenzhen.

My slides and the recorded talk:

Here’s The Incredible Machine’s documentary:

Learn more about View Source: Shenzhen.

Trustmarks for the Internet of Things

I’ve been working on two projects directly related to trust in IoT. I wrote up some thoughts on the underlying issues and challenges that are relevant to both here.

Trust and Expectations in IoT
Trust and Expectations in IoT

So what are the two projects?

The #iotmark initiative, co-founded by Alexandra Deschamps-Sonsino and Usman Haque (both friends, collaborators, and ThingsCon alumni) tries to develop a consumer label for IoT products. Follow along and get involved at iotmark.wordpress.com. Together with Laura James of UK charity Doteveryone, my role is to look into governance structures. Some early thoughts about the kickoff event here.

For Mozilla, I’ve been doing research into the potential of trustmarks for IoT. The report should be done by the fall and will be published in full. (Disclosure: My partner Michelle Thorne works for Mozilla.)

ThingsCon

July was a big ThingsCon month!

With four ThingsCon events (Amsterdam, Berlin, Cologne, Darmstadt), we have a new record of events per month.

Above, you’ve already seen the publication of the video documentary that came out of our recent Shenzhen trips.

Our non-profit structure was approved in Germany (an e.V.) and just received its tax number. This being Germany, the tax number unlocks all the next steps, like opening a bank account, and essentially being able to conduct any official business.

We’re in conversations with local teams about (hopefully) founding several new ThingsCon chapters in Asia and Africa. This is super exciting to me! More on that soon. I’d love to see more chapters around the world, especially in the global South.

Zephyr Berlin

Get yourself a pair of Zephyr Berlin pants now—there’s only a few left.

We’re back in tinker mode. We prototyped new, extra-deep pockets. This was by far the most requested feature.


A few extra centimeters of depth.


Deep pockets are deep.

I'm pushing down the phone in the pocket so you can see the outline a little all the way down. Those are deep pockets!
I’m pushing down the phone in the pocket so you can see the outline a little all the way down. Those are deep pockets!

By the way, if you already have a pair and would like to upgrade, there’s no need to replace your current one: We had this change done by our local tailor and would encourage you to do the same. It’s easy, it’s just a few bucks, and most importantly it means keeping your clothes in use longer.

We’re still looking for examples of how people have modded, hacked or repaired their Zephyrs. If you have, send us a pic, please?

What’s on the horizon?

Outside the ongoing client projects there are a bunch of conference presentations coming up that I’m very much looking forward to:

I’ll be speaking at the conference Das ist Netzpolitik!. At the request of the organizers, even in German! The preliminary title of my presentation: Das Internet der Dinge: Rechte, Regulierung & Spannungsfelder.

Also, I’ll be at SimplySecure’s Underexposed conference to talk about The Internet of Sneaky Things.

Last but not least, I’m planning to head to Mozfest later this fall, too, for all of the stuff related to IoT labels and trustmarks mentioned above.

First and foremost, get the basics right

F

In my work, and in an endless stream of conversations, I notice how organizations focus on perfect delivery over getting the basics right. This is a recipe for disaster! Today I’ll make the case for focusing on the basics first, even though this might not seem as rewarding in the short term.

For example, if you build a table with four solid legs, even if it might look crappy it’ll fulfill its primary purpose. It’s a table. It’s table-ness, manifested. However, it you focus on perfect delivery and apply the most beautiful polish to a table without first getting the basics right, you’ll end up with an object that might look beautiful but is too wobbly to use. It’s not a table, but a simulacrum of a table.

This principle holds for all walks of life and organizational output. For something a little less cliché than a table, consider a developer event. Even the most polished developer event with fantastic catering and a great video documentary is bound to fail if there isn’t a powerful API and the documentation to go with it: If the company culture isn’t yet at the point to be open for external developers, no amount of polish at the event will help.

First and foremost, we need to get the basics right.

I could go on listing examples, but the principle is clear: Basics first. Once the basics are in place, the rest can follow, but the opposite is not true.

The issue is, of course, that often the basics don’t offer much chance to increase one’s standing or profile internally or externally, at least not in the short term. It’s essentially plumbing work like all infrastructure: Incredibly important, but not generally lauded.

The same holds true for solid strategy and future-proofing work: In order to successfully future-proof an organization, it’s usually necessary to touch on all parts of the organization. Org charts, business models, culture, strategy, tactics, processes, product, marketing and all the rest needs to be on the table. Like security, you can’t just tack it on after.

Before you can run, you need to learn how to walk. Only once a reliable foundation—the basics!—is in place, you can move on to greatness.